A Common Fixed-Point Theorem in Reflexive Locally Uniformly Convex Banach Spaces
نویسندگان
چکیده
منابع مشابه
Uniformly convex Banach spaces are reflexive - constructively
We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...
متن کاملFixed Point Theorems in Uniformly Convex Banach Spaces
The notion of an asymptotic center is used to prove a number of results concerning the existence of fixed points under certain selfmappings of a closed and bounded convex subset of a uniformly convex Banach space.
متن کاملTransversal spaces and common fixed point Theorem
In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.
متن کاملCommon fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces
In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a finite family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the propose iterative scheme under some appropriate conditions.
متن کاملA common fixed point theorem on ordered metric spaces
A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1985
ISSN: 0002-9939
DOI: 10.2307/2045224